

    
      
          
            
  
Welcome to pyModelChecking’s documentation!

pyModelChecking is a simple Python model checking package.
Currently, it is
able to represent Kripke structures, CTL,
LTL, and CTL* formulas and it provides
model checking [https://it.wikipedia.org/wiki/Model_checking] methods for LTL, CTL, and CTL*.
In future, it will hopefully support symbolic model checking.
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Reactive Systems

Reactive systems are systems that interact with their environment and
evolve over an infinite time horizon. This chapter presents a natural model
for them: Kripke structure.


Directed Graphs

A directed graph, or graph, is pair \((V,E)\) where:


	\(V\) is a finite set of nodes


	\(E \subseteq V \times V\) is a set of edges




If \((s,d) \in E\), then \(s\) and \(d\) are the source and the
destination of \((s,d)\), respectively. The edge \((s,d) \in E\) is
said to go from :math:`s` to :math:`d`. If \(e \in E\) goes either
from \(s\) to \(d\) or from \(d\) to \(s\), then \(e\)
is an edge between \(d\) and \(s\). By extension,
an edge \(e \in E\) goes from \(V_1 \subseteq S\) to
\(V_2 \subseteq S\) if there exists a pair of nodes
\((v_1,v_2) \in V_1 \times V_2\) such that \((v_1,v_2) \in E\).
Analogously, \(e \in E\) is between \(V_1\) and \(V_2\) if
it is either from \(V_1\) to \(V_2\) or from \(V_2\) to \(V_1\).

The reversed graph of a graph \((V,E)\) is the graph \((V,E')\)
where \(E'={(d,s) | (s,d) \in E}\).

A subgraph of a graph \((V,E)\) is a graph \((V',E')\) such that
\(V' \subseteq V\) and \(E' \subseteq E \cap (V' \times V')\).
A subgraph \((V',E')\) of \((V,E)\) is a proper subgraph if
either \(V'\subsetneq V\) or \(E'\subsetneq E\). A subgraph
\(G\) of \((V,E)\) respects a set of nodes \(V' \subseteq V\)
if \(G=(V',E \cap (V' \times V'))\).

A sequence, either finite or infinite, \(\pi=v_0 v_1 \ldots\) is a path
for the graph \((V,E)\) if \((v_i,v_{i+1}) \in E\) for all \(v_i\)
and \(v_{i+1}\) in \(\pi\). The lenght of a path \(\pi\),
denoted by \(|\pi|\), is the size of the sequence.

It is easy to see that if \(\pi=v_0 \ldots v_n\) and
\(\pi'=w_0 \ldots\) are two paths for \((V,E)\) such that
\((v_n,w_0) \in E\), then
\(\pi\cdot\pi'=v_0 \ldots v_n w_0 \ldots\) is path for \((V,E)\).

Let \(\pi\), \(\pi'\), and \(\pi''\) be three paths such that
\(\pi=\pi'\cdot\pi''\). Then, \(\pi'\) is a prefix of \(\pi\)
and \(\pi''\) is a suffix of \(\pi\).
We write \(\pi_i\) to denote the suffix of \(\pi\) for which
\(\pi=\pi' \cdot \pi_i\) and \(|\pi'|=i\) for some \(\pi'\).

If \(v_0 v_1 \ldots v_n\) is a prefix for some path \(\pi\) of
a graph \((V,E)\), then we say that either
\(\pi\) starts from \(v_0\) and reaches \(v_n\) or,
equivantely, \(v_n\) is reachable from \(v_0\) in
\((V,E)\).

Every subgraph \((V',E')\) of \(G\) such that:


	\(v\) is reachable from \(v'\) for all pairs \(v,v' \in V'\) and


	is not proper subgraph of any subgraph of \(G\) that satisfies 1.




is a strongly connected component of \(G\). It is easy to see that the
the sets of nodes of each strongly connected component of a graph \((V,E)\)
is a partition of \(V\). A strongly connected component \((V',E')\)
is trivial if \(|V'|=1\) and \(|E'|=0\).


Directed Acyclic Graphs and Trees

A directed acyclic graph or DAG is a directed graph whose
strongly connected components are all trivial.

A graph \((V,E)\) is disconnected if there exists a
\(V' \subseteq V\) such that there are no edges between \(V'\) and
\(V\setminus V'\). If a graph is not disconnected, then is connected.

A directed tree is a connected DAG \((V,E)\) whose subgraphs of the form
\((V,E')\), where \(E' \subsetneq E\), are disconnected.






Kripke Structures

A Kripke structure is a directed graph,
equipped with a set of initial nodes,
such that every node is source of some edge and it is labeled by a
set of atomic propositions [CGP00].
The nodes of Kripke structure are called states.

A Kripke structure is a tuple \((S,S_0,R,L)\) such that:


	\(S\) is a finite set of states


	\(S_0\subseteq S\) is a set of initial states


	\(R\subseteq S\times S\) is a set of transitions such that
for all \(s \in S\) there exists a \((s,s') \in R\) for some
\(s' \in S\)


	\(L:S \rightarrow AP\) maps each state into a set of
atomic propositions




Sometime, the set of initial states is omitted. In such cases, \(S\) and
\(S_0\) coincide.

A computation of a Kripke structure \((S,S_0,R,L)\) is an infinite
path of \((S,R)\) that starts from some \(s \in S_0\).







          

      

      

    

  

    
      
          
            
  
Temporal Logics


Computational Tree Logic*

The Computational Tree Language* or CTL* is a the temporal logic
that describes the properties of computation trees over Kripke structures
([CE81], [CES86]). Beside a set of atomic propostions and the standard
logical operators \(\neg\), \(\land\), \(\lor\), and
\(\rightarrow\), the alphabet of CTL* contains the two path quantifiers
\(\mathbf{A}\) (“for all paths”) and \(\mathbf{E}\) (“for some path”) and the five
temporal operators \(\mathbf{X}\) (“at the next step”), \(\mathbf{G}\) (“globally”),
\(F\) (“in the future”), \(\mathbf{U}\) (“until”), and \(\mathbf{R}\) (“release”).


Syntax

Any CTL* formula is either a state formula (i.e., a formula that are
evaluated in a single state) or a path formula (i.e., a formula whose
truth value depend on an infinite path).

A CTL* state formula is either:


	\(\top\) or \(\bot\)


	an atomic proposition


	\(\neg\varphi_1\), \(\varphi_1 \land \varphi_2\),
\(\varphi_1 \lor \varphi_2\), or
\(\varphi_1 \rightarrow \varphi_2\) where both \(\varphi_1\) and
\(\varphi_2\) are CTL* state formulas


	\(\mathbf{A} \psi\) or \(\mathbf{E} \psi\) where \(\psi\) is a CTL* path
formula




A CTL* path formula is either:


	a state formula


	\(\neg\psi_1\), \(\psi_1 \land \psi_2\), \(\psi_1 \lor \psi_2\),
or \(\psi_1 \rightarrow \psi_2\) where both \(\psi_1\) and
\(\psi_2\) are CTL* path formulas


	\(\mathbf{X} \psi_1\), \(\mathbf{F} \psi_1\), \(\mathbf{G} \psi_1\),
\(\psi_1 \mathbf{U} \psi_2\), or
\(\psi_1 \mathbf{R} \psi_2\) where both \(\psi_1\) and \(\psi_2\)
are CTL* path formulas







Semantics

The semantics of CTL* formulas are given with respect to a
Kripke structure. If \(K\) is a Kripke structure,
\(s\) one of its states, and \(\varphi\) a state formula,
we write \(K,s \models \varphi\) (to be read “\(K\) and \(s\)
satisfy \(\varphi\)”) meaning that \(\varphi\) holds at state
\(s\) in \(K\). Analogously, If \(K\) is a Kripke structure,
\(\pi\) one of its computations, and \(\psi\) a path formula,
we write \(K,\pi \models \psi\) meaning that \(\psi\) holds
along \(\pi\) in \(K\).

Let \(K\) be the Kripke structure \((S,S_0,R,L)\);
the relation \(\models\) is defined recursively as follows:


	\(K,s \models \top\) and \(K,s \not\models \bot\) for any state
\(s \in S\)


	if \(p \in AP\), then \(K,s \models p\)
\(\Longleftrightarrow\) \(p \in L(s)\)


	\(K,s \models \neg\varphi\)
\(\Longleftrightarrow\) \(K,s \not\models \varphi\)


	\(K,s \models \varphi_1 \land \varphi_2\) \(\Longleftrightarrow\)
\(K,s \models \varphi_1\) and \(K,s \models \varphi_2\)


	\(K,s \models \varphi_1 \lor \varphi_2\) \(\Longleftrightarrow\)
\(K,s \models \varphi_1\) or \(K,s \models \varphi_2\)


	\(K,s \models \varphi_1 \rightarrow \varphi_2\)
\(\Longleftrightarrow\)
\(K,s \not\models \varphi_1\) or \(K,s \models \varphi_2\)


	\(K,s \models \mathbf{A} \varphi\)
\(\Longleftrightarrow\) \(K,\pi \models \varphi\)
for any computation \(\pi\) of \(K\) that starts from \(s\)


	\(K,s \models \mathbf{E} \varphi\)
\(\Longleftrightarrow\) \(K,\pi \models \varphi\)
for some computation \(\pi\) of \(K\) that starts
from \(s\)


	\(K,\pi \models \psi\)
\(\Longleftrightarrow\) \(K,s \models \psi\), where
\(\pi\) is a computation of \(K\) that starts from \(s\)


	\(K,\pi \models \neg\psi\)
\(\Longleftrightarrow\) \(K,\pi \not\models \psi\)


	\(K,\pi \models \psi_1 \land \psi_2\) \(\Longleftrightarrow\)
\(K,\pi \models \psi_1\) and \(K,\pi \models \psi_2\)


	\(K,\pi \models \psi_1 \lor \psi_2\) \(\Longleftrightarrow\)
\(K,\pi \models \psi_1\) or \(K,\pi \models \psi_2\)


	\(K,\pi \models \psi_1 \rightarrow \psi_2\) \(\Longleftrightarrow\)
\(K,\pi \not\models \psi_1\) or \(K,\pi \models \psi_2\)


	\(K,\pi \models \mathbf{X} \psi\)
\(\Longleftrightarrow\) \(K,\pi_1 \models \psi\)


	\(K,\pi \models \mathbf{F} \psi\)
\(\Longleftrightarrow\) \(K,\pi_i \models \psi\)
for some \(i \in \mathbb{N}\)


	\(K,\pi \models \mathbf{G} \psi\) \(\Longleftrightarrow\)
\(K,\pi_i \models \psi\) for all \(i \in \mathbb{N}\)


	\(K,\pi \models \psi_1 \mathbf{U} \psi_2\)
\(\Longleftrightarrow\) there exists an
\(i \in \mathbb{N}\) such that \(K,\pi_i \models \psi_2\)
and \(K,\pi_j \models \psi_1\) for all \(j \in [0,i-1]\)


	\(K,\pi \models \psi_1 \mathbf{R} \psi_2\) \(\Longleftrightarrow\) for all
\(i \in \mathbb{N}\), if \(K,\pi_j \not\models \psi_1\)
for all \(j \in [0,i-1]\), then \(K,\pi_i \models \psi_2\)




Whenever \(K,\sigma \models \psi\) \(\Longleftrightarrow\)
\(K,\sigma \models \varphi\) for any \(\sigma\) and
and any \(K\), we say that \(\psi\) and
\(\varphi\) are equivalent and we write
\(\varphi \equiv \psi\).

Two set of formulas \(\mathcal{F}\) and
and any \(\mathbf{G}\) are equivalent if
any formula \(\mathbf{G}\) has an equivalent formula
in \(\mathcal{F}\) and vice versa.




Restricted Syntax

It is easy to prove that \(\bot\), \(\mathbf{F} \psi\), \(\mathbf{G} \psi\),
\(\varphi \mathbf{R} \psi\), \(\mathbf{A} \varphi\), \(\varphi \land \psi\),
and \(\varphi \rightarrow \psi\) are equivalent to
\(\neg \top\), \(\top \mathbf{U} \psi\), \(\neg (\top \mathbf{U} \neg \psi)\),
\(\neg (\neg \varphi \mathbf{U} \neg \psi)\), \(\neg \mathbf{E} \neg \varphi\),
\(\neg (\varphi \lor \psi)\), and \(\neg \varphi \lor \psi\),
respectively. Thus, the CTL* language whose alphabet is restricted to
\(\neg\), \(\lor\), \(\mathbf{X}\), \(\mathbf{U}\), \(\mathbf{A}\), \(\top\),
and atomic propositions is equivalent to the full CTL* language
(e.g., see [CGP00]).






Computational Tree Logic

The Computational Tree Language or CTL is a subset of CTL*
([BMP83], [CE81], [CE80]). In CTL, each occurence of the
two path quantifiers \(\mathbf{A}\) and \(\mathbf{E}\) should be
coupled to one of the temporal
operators \(\mathbf{X}\), \(\mathbf{G}\), \(\mathbf{F}\), \(\mathbf{U}\), or \(\mathbf{U}\).


Syntax

More formally, a CTL state formula is either:


	\(\top\) or \(\bot\)


	an atomic proposition


	\(\neg \varphi_1\), \(\varphi_1 \land \varphi_2\),
\(\varphi_1 \lor \varphi_2\), or \(\varphi_1 \rightarrow \varphi_2\),
where both \(\varphi_1\) and \(\varphi_2\) are CTL state formulas


	\(\mathbf{A} \psi\) or \(\mathbf{E} \psi\) where \(\varphi\) is a CTL path
formula




A CTL path formula is either \(\mathbf{X} \varphi_1\),
\(\mathbf{F} \varphi_1\),
\(\mathbf{G} \varphi_1\), \(\varphi_1 \mathbf{U} \varphi_2\), or
\(\varphi_1 \mathbf{R} \varphi_2\) where both \(\varphi_1\) and
\(\varphi_2\) are CTL state formulas.




Semantics

CTL has the same semantics of CTL*.




Restricted Syntax

Despite the apperent syntatic complexity of CTL, any possible property
definable in it can be expressed by a CTL formula whose syntax is restricted
to the use of \(\top\), \(\neg\), \(\lor\), and \(\mathbf{E}\) coupled to
either \(\mathbf{X}\), \(\mathbf{U}\), or \(\mathbf{G}\) (e.g., see [CGP00]).
As a matter of the facts, it is easy to prove that:


	\(\bot \equiv \neg \top\)


	\(\varphi_1 \land \varphi_2 \equiv \neg (\neg \varphi_1 \lor \neg \varphi_2)\)


	\(\varphi_1 \rightarrow \varphi_2 \equiv \neg \varphi_1 \lor \varphi_2\)


	\(\mathbf{A}\mathbf{X} \varphi \equiv \neg \mathbf{E}\mathbf{X} (\neg \varphi)\)


	\(\mathbf{E}F \varphi \equiv \mathbf{E}(\top \mathbf{U} \varphi)\)


	\(\mathbf{A}\mathbf{G} \varphi \equiv \neg \mathbf{E}(\top \mathbf{U} \neg \varphi)\)


	\(\mathbf{A}F \varphi \equiv \neg \mathbf{E}\mathbf{G} (\neg \varphi)\)


	\(\mathbf{A}(\varphi_1 \mathbf{U} \varphi_2) \equiv \neg (\mathbf{E} ((\neg \varphi_2) \mathbf{U} \neg (\varphi_1 \lor \varphi_2) ) \lor \mathbf{E}\mathbf{G}(\neg \varphi_2))\)


	\(\mathbf{A}(\varphi_1 \mathbf{R} \varphi_2) \equiv \neg \mathbf{E} ((\neg \varphi_1) \mathbf{U} (\neg \varphi_2))\)


	\(\mathbf{E}(\varphi_1 \mathbf{R} \varphi_2) \equiv (\mathbf{E} (\varphi_2 \mathbf{U} (\neg \varphi_1 \lor \neg \varphi_2) ) \lor \mathbf{E}\mathbf{G}(\varphi_2))\)









Linear Time Logic

The Linear Time Logic or LTL is a subset of of CTL*
([P77]).


Syntax

LTL formulas have the form \(A \rho\) where \(\rho\)
is a LTL path formula and a LTL path formula is either:


	\(\top\) or \(\bot\)


	an atomic proposition


	\(\neg \varphi_1\), \(\varphi_1 \land \varphi_2\),
\(\varphi_1 \lor \varphi_2\), or \(\varphi_1 \rightarrow \varphi_2\),
where both \(\varphi_1\) and \(\varphi_2\) are LTL path formulas


	\(\mathbf{X} \varphi_1\), \(\mathbf{F} \varphi_1\),
\(\mathbf{G} \varphi_1\), \(\varphi_1 \mathbf{U} \varphi_2\), or
\(\varphi_1 \mathbf{R} \varphi_2\) where both \(\varphi_1\) and
\(\varphi_2\) are LTL path formulas.







Semantics

LTL has the same semantics of CTL*.




Restricted Syntax

It is easy to prove that:


	\(\psi_1 \land \psi_2 \equiv \neg (\neg \psi_1 \lor \neg \psi_2)\)


	\(\psi_1 \rightarrow \psi_2 \equiv \neg \psi_1 \lor \psi_2\)


	\(\mathbf{F} \psi \equiv \top \mathbf{U} \psi\)


	\(\mathbf{G} \psi \equiv \neg (\top \mathbf{U} \neg \psi)\)


	\(\psi_1 \mathbf{R} \psi_2 \equiv \neg ((\neg \psi_1) \mathbf{U} (\neg \psi_2))\)




Hence, the LTL restricted language that allows
exclusively the path formulas whose operators are
\(\neg\), \(\lor\), \(\mathbf{X}\), or \(\mathbf{U}\)
is equivalent to the full LTL language (e.g., see [CGP00]).
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Model Checking

Model checking is a technique to establish the set of states in Kripke
structure that satisfy a given temporal formula. More formally, provided
a Kripke structure \(K=(S,S_0,R,L)\) and a temporal formula
\(\varphi\), model checking aims to identify
\(S' \subseteq S\) such that


\[K,s_i \models \varphi\]

for all \(s_i \in S'\).

Model checking problem for CTL*, CTL and
LTL is decidable even though the time complexity of the
algorithm is logics dependent: the complexities of the CTL,
LTL and CTL* decision
procedures are \(O(|\varphi| * (|S|+|R|))\),
\(O(2^{O(|\varphi|)} * (|S|+|R|))\) and
\(O(2^{O(|\varphi|)} * (|S|+|R|))\), respectively.


Fair Model Checking

A fair Kripke structure is a Kripke structure \((S, S_0, R, L)\)
added with a set of fair states \(F \subseteq S\). A fair path
for it is an infinite path that passes through all the fair states infinitely
often.

Fair model checking only considers fair paths.
A fair state is a path from which at least one fair path originates.







          

      

      

    

  

    
      
          
            
  
Symbolic Representation

Binary Decision Diagrams (BDDs) and
Ordered Binary Decision Diagrams (OBDDs)
are data structures to represent binary functions [Bryant86].


Binary Decision Diagrams

BDDs are directed graphs whose nodes can be either terminal or non-terminal.
Terminal nodes are labelled by a binary value and they are not source of any
edge. If \(t\) is a terminal node, we write \(t.value\) to denote the value of \(t\).
Non-terminal nodes are labelled by a variable name and they
are source of two edges called low and high. If \(n\) is a non-terminal
node, we write \(n.var\), \(n.low\), and \(n.high\) to denote the variable name,
the edge low, and the edge high of the node \(n\).

Any terminal node \(t\) represents the binary function \(t.value\), while
any non-terminal node \(n\) encodes the binary function
\((\tilde{}n.var \& f_l) | (n.var \& f_h)\) where \(f_l\) and \(f_h\) are the binary
functions associated to \(n.low\) and \(n.high\), respectively.

A BDD respects a variable ordering \(<\) whenever \(n.var < n.low.var\)
for all non-terminal nodes \(n\) and \(n.low\) and \(n.var < n.high.var\)
for all non-terminal nodes \(n\) and \(n.high\).




Ordered Binary Decision Diagrams

The logical equivalence of two binary functions can be reduced to the
existence of an isomorphism between the BDD encoding them under three conditions:


	the two BDDs respect the same variable ordering;


	\(n.low\) and \(n.high\) are different nodes for any non-terminal node \(n\) in
both the BDDs;


	for each of the BDDs and for all pairs of nodes in it, there is no
isomophism between them.




OBDDs are BDDs equipped of a variable ordering and satisfying condition 2. and 3.

Whenever two binary functions \(f_1\) and \(f_2\) are stored as OBDD and they share
the same variable ordering, it is possible to:


	test logical equivalence between \(f_1\) and \(f_2\) in time \(O(1)\);


	compute the OBDD that represents:


	the bitwise negation of the formula \(f_1\) in time \(O(|f_1|)\);


	the bitwise binary combinations of the functions \(f_1\) and \(f_2\) in time
\(O(|f_1|+|f_2|)\).









	Bryant86

	Randal E. Bryant. “Graph-Based Algorithms for Boolean Function
Manipulation”. IEEE Transactions on Computers, C-35(8):677–691, 1986.











          

      

      

    

  

    
      
          
            
  
Modelling Reactive Systems


Directed Graphs

Directed graphs can be represented in pyModelChecking by using
the class DiGraph (see Graph API).

>>> from pyModelChecking import *
>>> G = DiGraph(V=['a',3],
...             E=[('a','a'), ('a','b')])
>>> print(G)

(V=['a', 3, 'b'], E=[('a', 'a'), ('a', 'b')])

>>> G.nodes()

['a', 3, 'b']

>>> G.edges()

[('a','a'), ('a','b')]

>>> G.add_edge('c','b')
>>> G.nodes()

['a', 'c', 3, 'b']

>>> G.edges()

[('a', 'a'), ('a', 'b'), ('c', 'b')]





The same class provides methods to compute reachable sets,
reversed graphs and subgraphs of a given directed graph.

>>> print(G.get_reversed_graph())

(V=['a', 'c', 3, 'b'], E=[('a', 'a'), ('b', 'a'), ('b', 'c')])

>>> print(G.get_subgraph(['a','b',3]))

(V=['a', 3, 'b'], E=[('a', 'a'), ('a', 'b')])

>>> print(G.get_reachable_set_from(['a', 3]))

set(['a', 3, 'b'])

>>> print(G.get_reachable_set_from(['d']))
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "pyModelChecking/graph.py", line 203, in get_reachable_set_from
    for d in self.next(s):
  File "pyModelChecking/graph.py", line 120, in next
    'of this DiGraph')
RuntimeError: src = 'd' is not a node of this DiGraph





pyModelChecking can also compute the strongly connected components of a
directed graph.

>>> G.add_edge('b','a')
>>> print(list(compute_strongly_connected_components(G)))
[['a', 'b'], ['c'], [3]]





Refer to Graph API for more details.




Kripke Structures

Kripke structures are representable by using the class
Kripke (see Kripke API).

>>> from pyModelChecking import *
>>> K = Kripke(S=[0, 1, 3],
...            R=[(0, 2), (2, 2), (0, 1), (1, 0), (3, 2)],
...            L={1: ['p', 'q'], 2: ['p', 'q'], 3: ['q']})
>>> print(K)

(S=[0, 1, 2, 3],S0=set([]),R=[(0, 1), (0, 2), (1, 0), (2, 2), (3, 2)],L={0: set([]), 1: set(['q', 'p']), 2: set(['q', 'p']), 3: set(['q'])})





The sets of Kripke’s states and transitions can be obtained by using the
following syntax:

>>> K.states()

[0, 1, 2, 3]

>>> K.transitions()

[(0, 1), (0, 2), (1, 0), (2, 2), (3, 2)]





It is possible to get the successors of a given state with respect to the Kripke’s transitions:

>>> K.next(0)

set([1, 2])





Finally, the API provides a method for getting the labels of Kripke’s states.

>>> K.labels()

set(['q', 'p'])

>>> K.labels(3)

set(['q'])











          

      

      

    

  

    
      
          
            
  
Encoding Formulas and Model Checking

pyModelChecking provides a user friendly support for building
CTL*, CTL and LTL formulas. Each of these
languages corresponds to a pyModelChecking’s sub-module which implements
all the classes required to encode the corresponding formulas.

Propositional logic is also supported by pyModelChecking as a shared
basis for all the possible temporal logics.


Propositional Logics

Propositional logics support is provided by including the
pyModelChecking.language sub-module. This sub-module allows to
represents atomic propositions and Boolean values through the
pyModelChecking.formula.AtomicProposition and
pyModelChecking.formula.Bool classes, respectively.

>>> from pyModelChecking.formula import *
>>> AtomicProposition('p')

p

>>> Bool(True)

True





Moreover, the pyModelChecking.language sub-module
implements the logic operators \(\land\), \(\lor\), \(\rightarrow\)
and \(\neg\) by mean of the classes
pyModelChecking.formula.And, pyModelChecking.formula.Or,
pyModelChecking.formula.Imply and
pyModelChecking.formula.Not, respectively. These classes
automatically wrap strings and Boolean values as objects of the classes
pyModelChecking.formula.AtomicProposition and
pyModelChecking.formula.Bool, respectively.

>>> And('p', True)

(p and True)

>>> And('p', True, 'p')

(p and True and p)

>>> f = Imply('q','p')
>>> And('p', f, Imply(Not(f), Or('q','s', f)))

(p and (q --> p) and (not (q --> p) --> (q or s or (q --> p))))

>> Imply('p', 'q', 'p')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: __init__() takes exactly 3 arguments (4 given)





For user convenience, the function pyModelChecking.formula.LNot()
is also provided. This function returns a formula equivalent to logic
negation of the parameter and minimise the number of outermost \(\neg\).

>>> f = Not(Not(Not(And('p',Not('q')))))
>>> f

not not not (p and not q)

>>> LNot(f)

(p and not q)

>>> LNot(Not(f))

not (p and not q)

>>> LNot(LNot(f))

not (p and not q)








Temporal Logics Implementation

CTL* formulas can be defined by using the
pyModelChecking.CTLS sub-module.

>>> from pyModelChecking.CTLS import *





Path quantifiers \(A\) and \(E\) as well as temporal operators
\(X\), \(F\), \(G\), \(U\) and \(R\)  are provided as
classes (see ref:CTLS sub-module<ctls_api> for more details).
As in the case of propositional logics, these classes wrap strings and
Boolean values as objects of the classes
pyModelChecking.CTLS.language.AtomicProposition and
pyModelChecking.CTLS.language.Bool, respectively.

>>> phi = A(G(
...         Imply(And(Not('Close'),
...                   'Start'),
...               A(Or(G(Not('Heat')),
...                    F(Not('Error')))))
...         ))
>>> phi

A(G(((not Close and Start) --> A((G(not Heat) or F(not Error))))))





In order to simplify the use of the library, a parsing class
pyModelChecking.CTLS.Parser: has been implemented. Its objects
read a formula from a string and, when it is possible, translate it into a
corresponding pyModelChecking.CTLS.Formula objects.

>>> parser = Parser()
>>> psi_str = 'A G ((not Close and Start) --> ' +
...           'A(G(not Heat) or F(not Error)))'
>>> psi = parser(psi_str)
>>> psi

A(G(((not Close and Start) --> A((G(not Heat) or F(not Error))))))





The sub-module also implements the CTL* model checking and fair model checking
algorithms described in [CGP00].

>>> from pyModelChecking import Kripke
>>> K = Kripke(R=[(0, 1), (0, 2), (1, 4), (4, 1), (4, 2), (2, 0),
...               (3, 2), (3, 0), (3, 3), (6, 3), (2, 5), (5, 6)],
...            L={0: set(), 1: set(['Start', 'Error']), 2: set(['Close']),
...               3: set(['Close', 'Heat']),
...               4: set(['Start', 'Close', 'Error']),
...               5: set(['Start', 'Close']),
...               6: set(['Start', 'Close', 'Heat'])})
>>> modelcheck(K, psi)

set([0, 1, 2, 3, 4, 5, 6])

>>> modelcheck(K, psi, F=[6])

set([])





It is also possible to model check a string representation of a CTL* formula by
either passing an object of the class pyModelChecking.CTLS.Parser
or leaving the remit of creating such an object to the function
pyModelChecking.CTLS.modelcheck().

>>> modelcheck(K, psi_str)

set([0, 1, 2, 3, 4, 5, 6])

>>> modelcheck(K, psi_str, parser=parser)

set([0, 1, 2, 3, 4, 5, 6])





Analogous functionality are provided for CTL and LTL
by the sub-modules pyModelChecking.CTL and
pyModelChecking.LTL, respectively.







          

      

      

    

  

    
      
          
            
  
Models API

pyModelChecking provides implementations for
directed graph and
Kripke structures.


Graph API

It is used to define directed graphs and provides a method
to compute the strogly connected components of a directed graph.




Kripke API

It is used to define Kripke structures.







          

      

      

    

  

    
      
          
            
  
Logics and Model Checking API

The implementations of specific languages and their model checking routines
are contained in pyModelChecking sub-modules. CTL*, CTL, and LTL
are handled by CTLS sub-module, CTL sub-module
and LTL sub-module, respectively.


CTLS sub-module API

It represents CTL* formulas and provides model checking methods for them.


Language




Model Checking






CTL sub-module API

It represents CTL formulas and provides model checking methods for them.


Language




Model Checking






LTL sub-module API

It represents LTL formulas and provides model checking methods for them.


Language




Model Checking
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