pyModelChecking Documentation

Release 0.2.0

Alberto Casagrande

Contents

1		e Notions	3				
	1.1	Reactive Systems	3				
	1.2	Temporal Logics	4				
	1.3	Model Checking	7				
	1.4	Symbolic Representation	8				
2	Using	g pyModelChecking	9				
	2.1	Modelling Reactive Systems	9				
	2.2	Encoding Formulas and Model Checking					
3	API		15				
	3.1	Models API	15				
	3.2	Logics and Model Checking API	15				
4	Indic	Indices and tables					
Bi	Bibliography						

pyModelChecking is a simple Python model checking package. Currently, it is able to represent *Kripke structures*, *CTL*, *LTL*, and *CTL** formulas and it provides model checking methods for LTL, CTL, and CTL*. In future, it will hopefully support symbolic model checking.

Contents 1

2 Contents

CHAPTER 1

Basic Notions

1.1 Reactive Systems

Reactive systems are systems that interact with their environment and evolve over an infinite time horizon. This chapter presents a natural model for them: Kripke structure.

1.1.1 Directed Graphs

A directed graph, or graph, is pair (V, E) where:

- V is a finite set of nodes
- $E \subseteq V \times V$ is a set of *edges*

If $(s,d) \in E$, then s and d are the *source* and the *destination* of (s,d), respectively. The edge $(s,d) \in E$ is said to go from :math: 's' to :math: 'd'. If $e \in E$ goes either from s to d or from d to s, then e is an edge **between** d and s. By extension, an edge $e \in E$ goes from $V_1 \subseteq S$ to $V_2 \subseteq S$ if there exists a pair of nodes $(v_1, v_2) \in V_1 \times V_2$ such that $(v_1, v_2) \in E$. Analogously, $e \in E$ is between V_1 and V_2 if it is either from V_1 to V_2 or from V_2 to V_1 .

The **reversed graph** of a graph (V, E) is the graph (V, E') where $E' = (d, s) | (s, d) \in E$.

A subgraph of a graph (V, E) is a graph (V', E') such that $V' \subseteq V$ and $E' \subseteq E \cap (V' \times V')$. A subgraph (V', E') of (V, E) is a **proper subgraph** if either $V' \subsetneq V$ or $E' \subsetneq E$. A subgraph G of (V, E) **respects** a set of nodes $V' \subseteq V$ if $G = (V', E \cap (V' \times V'))$.

A sequence, either finite or infinite, $\pi = v_0 v_1 \dots$ is a **path** for the graph (V, E) if $(v_i, v_{i+1}) \in E$ for all v_i and v_{i+1} in π . The *length of a path* π , denoted by $|\pi|$, is the size of the sequence.

It is easy to see that if $\pi = v_0 \dots v_n$ and $\pi' = w_0 \dots$ are two paths for (V, E) such that $(v_n, w_0) \in E$, then $\pi \cdot \pi' = v_0 \dots v_n w_0 \dots$ is path for (V, E).

Let π , π' , and π'' be three paths such that $\pi = \pi' \cdot \pi''$. Then, π' is a **prefix** of π and π'' is a **suffix** of π . We write π_i to denote the suffix of π for which $\pi = \pi' \cdot \pi_i$ and $|\pi'| = i$ for some π' .

If $v_0v_1 \dots v_n$ is a prefix for some path π of a graph (V, E), then we say that either π starts from v_0 and **reaches** v_n or, equivantely, v_n is **reachable** from v_0 in (V, E).

Every subgraph (V', E') of G such that:

- 1. v is reachable from v' for all pairs $v, v' \in V'$ and
- 2. is not proper subgraph of any subgraph of G that satisfies 1.

is a **strongly connected component** of G. It is easy to see that the sets of nodes of each strongly connected component of a graph (V, E) is a partition of V. A strongly connected component (V', E') is **trivial** if |V'| = 1 and |E'| = 0.

Directed Acyclic Graphs and Trees

A directed acyclic graph or DAG is a directed graph whose strongly connected components are all trivial.

A graph (V, E) is **disconnected** if there exists a $V' \subseteq V$ such that there are no edges between V' and $V \setminus V'$. If a graph is not disconnected, then is **connected**.

A directed tree is a connected DAG (V, E) whose subgraphs of the form (V, E'), where $E' \subseteq E$, are disconnected.

1.1.2 Kripke Structures

A **Kripke structure** is a *directed graph*, equipped with a set of initial nodes, such that every node is source of some edge and it is labeled by a set of *atomic propositions* [CGP00]. The nodes of Kripke structure are called *states*.

A Kripke structure is a tuple (S, S_0, R, L) such that:

- S is a finite set of states
- $S_0 \subseteq S$ is a set of *initial states*
- $R \subseteq S \times S$ is a set of transitions such that for all $s \in S$ there exists a $(s, s') \in R$ for some $s' \in S$
- $L: S \to AP$ maps each state into a set of atomic propositions

Sometime, the set of initial states is omitted. In such cases, S and S_0 coincide.

A **computation** of a Kripke structure (S, S_0, R, L) is an infinite path of (S, R) that starts from some $s \in S_0$.

1.2 Temporal Logics

1.2.1 Computational Tree Logic*

The **Computational Tree Language*** or **CTL*** is a the temporal logic that describes the properties of computation trees over Kripke structures ([CE81], [CES86]). Beside a set of atomic propostions and the standard logical operators \neg , \wedge , \vee , and \rightarrow , the alphabet of CTL* contains the two path quantifiers **A** ("for all paths") and **E** ("for some path") and the five temporal operators **X** ("at the next step"), **G** ("globally"), *F* ("in the future"), **U** ("until"), and **R** ("release").

Syntax

Any CTL* formula is either a *state formula* (i.e., a formula that are evaluated in a single state) or a *path formula* (i.e., a formula whose truth value depend on an infinite path).

A CTL* state formula is either:

- ⊤ or ⊥
- · an atomic proposition

- $\neg \varphi_1, \varphi_1 \land \varphi_2, \varphi_1 \lor \varphi_2$, or $\varphi_1 \to \varphi_2$ where both φ_1 and φ_2 are CTL* state formulas
- $\mathbf{A}\psi$ or $\mathbf{E}\psi$ where ψ is a CTL* path formula

A CTL* path formula is either:

- · a state formula
- $\neg \psi_1, \psi_1 \land \psi_2, \psi_1 \lor \psi_2$, or $\psi_1 \to \psi_2$ where both ψ_1 and ψ_2 are CTL* path formulas
- $\mathbf{X}\psi_1$, $\mathbf{F}\psi_1$, $\mathbf{G}\psi_1$, $\psi_1\mathbf{U}\psi_2$, or $\psi_1\mathbf{R}\psi_2$ where both ψ_1 and ψ_2 are CTL* path formulas

Semantics

The semantics of CTL* formulas are given with respect to a *Kripke structure*. If K is a Kripke structure, s one of its states, and φ a state formula, we write $K, s \models \varphi$ (to be read "K and s satisfy φ ") meaning that φ holds at state s in K. Analogously, If K is a Kripke structure, π one of its computations, and ψ a path formula, we write $K, \pi \models \psi$ meaning that ψ holds along π in K.

Let K be the Kripke structure (S, S_0, R, L) ; the relation \models is defined recursively as follows:

- $K, s \models \top$ and $K, s \not\models \bot$ for any state $s \in S$
- if $p \in AP$, then $K, s \models p \Longleftrightarrow p \in L(s)$
- $K, s \models \neg \varphi \iff K, s \not\models \varphi$
- $K, s \models \varphi_1 \land \varphi_2 \iff K, s \models \varphi_1 \text{ and } K, s \models \varphi_2$
- $K, s \models \varphi_1 \lor \varphi_2 \iff K, s \models \varphi_1 \text{ or } K, s \models \varphi_2$
- $K, s \models \varphi_1 \rightarrow \varphi_2 \Longleftrightarrow K, s \not\models \varphi_1 \text{ or } K, s \models \varphi_2$
- $K, s \models \mathbf{A}\varphi \iff K, \pi \models \varphi$ for any computation π of K that starts from s
- $K, s \models \mathbf{E}\varphi \Longleftrightarrow K, \pi \models \varphi$ for some computation π of K that starts from s
- $K, \pi \models \psi \iff K, s \models \psi$, where π is a computation of K that starts from s
- $K, \pi \models \neg \psi \iff K, \pi \not\models \psi$
- $K, \pi \models \psi_1 \land \psi_2 \Longleftrightarrow K, \pi \models \psi_1 \text{ and } K, \pi \models \psi_2$
- $K, \pi \models \psi_1 \lor \psi_2 \Longleftrightarrow K, \pi \models \psi_1 \text{ or } K, \pi \models \psi_2$
- $K, \pi \models \psi_1 \rightarrow \psi_2 \iff K, \pi \not\models \psi_1 \text{ or } K, \pi \models \psi_2$
- $K, \pi \models \mathbf{X}\psi \iff K, \pi_1 \models \psi$
- $K, \pi \models \mathbf{F}\psi \iff K, \pi_i \models \psi \text{ for some } i \in \mathbb{N}$
- $K, \pi \models \mathbf{G}\psi \Longleftrightarrow K, \pi_i \models \psi \text{ for all } i \in \mathbb{N}$
- $K, \pi \models \psi_1 \mathbf{U} \psi_2 \iff$ there exists an $i \in \mathbb{N}$ such that $K, \pi_i \models \psi_2$ and $K, \pi_j \models \psi_1$ for all $j \in [0, i-1]$
- $K, \pi \models \psi_1 \mathbf{R} \psi_2 \iff$ for all $i \in \mathbb{N}$, if $K, \pi_i \not\models \psi_1$ for all $j \in [0, i-1]$, then $K, \pi_i \models \psi_2$

Whenever $K, \sigma \models \psi \iff K, \sigma \models \varphi$ for any σ and and any K, we say that ψ and φ are **equivalent** and we write $\varphi \equiv \psi$.

Two set of formulas \mathcal{F} and and any \mathbf{G} are **equivalent** if any formula \mathbf{G} has an equivalent formula in \mathcal{F} and vice versa.

Restricted Syntax

It is easy to prove that \bot , $\mathbf{F}\psi$, $\mathbf{G}\psi$, $\varphi\mathbf{R}\psi$, $\mathbf{A}\varphi$, $\varphi \wedge \psi$, and $\varphi \to \psi$ are equivalent to $\neg \top$, $\top \mathbf{U}\psi$, $\neg (\top \mathbf{U}\neg \psi)$, $\neg (\neg \varphi \mathbf{U}\neg \psi)$, $\neg \mathbf{E}\neg \varphi$, $\neg (\varphi \vee \psi)$, and $\neg \varphi \vee \psi$, respectively. Thus, the CTL* language whose alphabet is restricted to \neg , \vee , \mathbf{X} , \mathbf{U} , \mathbf{A} , \top , and atomic propositions is equivalent to the full CTL* language (e.g., see [CGP00]).

1.2.2 Computational Tree Logic

The Computational Tree Language or CTL is a subset of CTL^* ([BMP83], [CE81], [CE80]). In CTL, each occurrence of the two path quantifiers **A** and **E** should be coupled to one of the temporal operators **X**, **G**, **F**, **U**, or **U**.

Syntax

More formally, a CTL state formula is either:

- ⊤ or ⊢
- · an atomic proposition
- $\neg \varphi_1, \varphi_1 \land \varphi_2, \varphi_1 \lor \varphi_2$, or $\varphi_1 \to \varphi_2$, where both φ_1 and φ_2 are CTL state formulas
- $\mathbf{A}\psi$ or $\mathbf{E}\psi$ where φ is a CTL path formula

A CTL path formula is either $\mathbf{X}\varphi_1$, $\mathbf{F}\varphi_1$, $\mathbf{G}\varphi_1$, $\varphi_1\mathbf{U}\varphi_2$, or $\varphi_1\mathbf{R}\varphi_2$ where both φ_1 and φ_2 are CTL state formulas.

Semantics

CTL has the same semantics of CTL*.

Restricted Syntax

Despite the appearnt syntatic complexity of CTL, any possible property definable in it can be expressed by a CTL formula whose syntax is restricted to the use of \top , \neg , \lor , and \mathbf{E} coupled to either \mathbf{X} , \mathbf{U} , or \mathbf{G} (e.g., see [CGP00]). As a matter of the facts, it is easy to prove that:

- ⊥ ≡ ¬T
- $\varphi_1 \wedge \varphi_2 \equiv \neg(\neg \varphi_1 \vee \neg \varphi_2)$
- $\varphi_1 \to \varphi_2 \equiv \neg \varphi_1 \lor \varphi_2$
- $\mathbf{A}\mathbf{X}\varphi \equiv \neg \mathbf{E}\mathbf{X}(\neg \varphi)$
- $\mathbf{E}F\varphi \equiv \mathbf{E}(\top \mathbf{U}\varphi)$
- $\mathbf{AG}\varphi \equiv \neg \mathbf{E}(\top \mathbf{U} \neg \varphi)$
- $\mathbf{A}F\varphi \equiv \neg \mathbf{EG}(\neg \varphi)$
- $\mathbf{A}(\varphi_1\mathbf{U}\varphi_2) \equiv \neg(\mathbf{E}((\neg\varphi_2)\mathbf{U}\neg(\varphi_1\vee\varphi_2))\vee\mathbf{EG}(\neg\varphi_2))$
- $\mathbf{A}(\varphi_1 \mathbf{R} \varphi_2) \equiv \neg \mathbf{E}((\neg \varphi_1) \mathbf{U}(\neg \varphi_2))$
- $\mathbf{E}(\varphi_1 \mathbf{R} \varphi_2) \equiv (\mathbf{E}(\varphi_2 \mathbf{U}(\neg \varphi_1 \lor \neg \varphi_2)) \lor \mathbf{E}\mathbf{G}(\varphi_2))$

1.2.3 Linear Time Logic

The **Linear Time Logic** or **LTL** is a subset of of *CTL** ([P77]).

Syntax

LTL formulas have the form $A\rho$ where ρ is a LTL path formula and a LTL path formula is either:

- ⊤ or ⊥
- · an atomic proposition
- $\neg \varphi_1, \varphi_1 \land \varphi_2, \varphi_1 \lor \varphi_2$, or $\varphi_1 \to \varphi_2$, where both φ_1 and φ_2 are LTL path formulas
- $\mathbf{X}\varphi_1$, $\mathbf{F}\varphi_1$, $\mathbf{G}\varphi_1$, $\varphi_1\mathbf{U}\varphi_2$, or $\varphi_1\mathbf{R}\varphi_2$ where both φ_1 and φ_2 are LTL path formulas.

Semantics

LTL has the same semantics of CTL*.

Restricted Syntax

It is easy to prove that:

- $\psi_1 \wedge \psi_2 \equiv \neg(\neg \psi_1 \vee \neg \psi_2)$
- $\psi_1 \rightarrow \psi_2 \equiv \neg \psi_1 \lor \psi_2$
- $\mathbf{F}\psi \equiv \top \mathbf{U}\psi$
- $\mathbf{G}\psi \equiv \neg(\top \mathbf{U}\neg\psi)$
- $\psi_1 \mathbf{R} \psi_2 \equiv \neg((\neg \psi_1) \mathbf{U}(\neg \psi_2))$

Hence, the LTL restricted language that allows exclusively the path formulas whose operators are \neg , \lor , \mathbf{X} , or \mathbf{U} is equivalent to the full LTL language (e.g., see [CGP00]).

1.3 Model Checking

Model checking is a technique to establish the set of states in Kripke structure that satisfy a given temporal formula. More formally, provided a Kripke structure $K=(S,S_0,R,L)$ and a temporal formula φ , model checking aims to identify $S'\subseteq S$ such that

$$K, s_i \models \varphi$$

for all $s_i \in S'$.

Model checking problem for CTL^* , CTL and LTL is decidable even though the time complexity of the algorithm is logics dependent: the complexities of the CTL, LTL and CTL^* decision procedures are $O(|\varphi|*(|S|+|R|))$, $O(2^{O(|\varphi|)}*(|S|+|R|))$ and $O(2^{O(|\varphi|)}*(|S|+|R|))$, respectively.

1.3.1 Fair Model Checking

A fair Kripke structure is a Kripke structure (S, S_0, R, L) added with a set of fair states $F \subseteq S$. A fair path for it is an infinite path that passes through all the fair states infinitely often.

Fair model checking only considers fair paths. A fair state is a path from which at least one fair path originates.

1.4 Symbolic Representation

Binary Decision Diagrams (BDDs) and Ordered Binary Decision Diagrams (OBDDs) are data structures to represent binary functions [Bryant86].

1.4.1 Binary Decision Diagrams

BDDs are *directed graphs* whose nodes can be either **terminal** or **non-terminal**. Terminal nodes are labelled by a *binary value* and they are not source of any edge. If t is a terminal node, we write t.value to denote the value of t. Non-terminal nodes are labelled by a *variable* name and they are source of two edges called *low* and *high*. If n is a non-terminal node, we write n.var, n.low, and n.high to denote the variable name, the edge low, and the edge high of the node n.

Any terminal node t represents the binary function t.value, while any non-terminal node n encodes the binary function $(n.var\&f_l)|(n.var\&f_h)$ where f_l and f_h are the binary functions associated to n.low and n.high, respectively.

A BDD **respects a variable ordering** < whenever n.var < n.low.var for all non-terminal nodes n and n.low and n.var < n.high.var for all non-terminal nodes n and n.high.

1.4.2 Ordered Binary Decision Diagrams

The logical equivalence of two binary functions can be reduced to the existence of an isomorphism between the BDD encoding them under three conditions:

- 1. the two BDDs respect the same variable ordering;
- 2. n.low and n.high are different nodes for any non-terminal node n in both the BDDs;
- 3. for each of the BDDs and for all pairs of nodes in it, there is no isomorhism between them.

OBDDs are BDDs equipped of a variable ordering and satisfying condition 2. and 3.

Whenever two binary functions f_1 and f_2 are stored as OBDD and they share the same variable ordering, it is possible to:

- test logical equivalence between f_1 and f_2 in time O(1);
- compute the OBDD that represents:
 - the bitwise negation of the formula f_1 in time $O(|f_1|)$;
 - the bitwise binary combinations of the functions f_1 and f_2 in time $O(|f_1| + |f_2|)$.

Using pyModelChecking

2.1 Modelling Reactive Systems

2.1.1 Directed Graphs

Directed graphs can be represented in pyModelChecking by using the class DiGraph (see Graph API).

The same class provides methods to compute **reachable sets**, **reversed graphs** and **subgraphs** of a given directed graph.

pyModelChecking can also compute the strongly connected components of a directed graph.

```
>>> G.add_edge('b','a')
>>> print(list(compute_strongly_connected_components(G)))
[['a', 'b'], ['c'], [3]]
```

Refer to Graph API for more details.

2.1.2 Kripke Structures

Kripke structures are representable by using the class Kripke (see *Kripke API*).

```
>>> from pyModelChecking import *
>>> K = Kripke(S=[0, 1, 3],
... R=[(0, 2), (2, 2), (0, 1), (1, 0), (3, 2)],
... L={1: ['p', 'q'], 2: ['p', 'q'], 3: ['q']})
>>> print(K)

(S=[0, 1, 2, 3],S0=set([]),R=[(0, 1), (0, 2), (1, 0), (2, 2), (3, 2)],L={0: set([]), L={0: set(['q', 'p']), 2: set(['q', 'p']), 3: set(['q'])})
```

The sets of Kripke's states and transitions can be obtained by using the following syntax:

```
>>> K.states()
[0, 1, 2, 3]
>>> K.transitions()
[(0, 1), (0, 2), (1, 0), (2, 2), (3, 2)]
```

It is possible to get the successors of a given state with respect to the Kripke's transitions:

```
>>> K.next(0)
set([1, 2])
```

Finally, the API provides a method for getting the labels of Kripke's states.

```
>>> K.labels()
set(['q', 'p'])
>>> K.labels(3)
set(['q'])
```

2.2 Encoding Formulas and Model Checking

pyModelChecking provides a user friendly support for building CTL*, CTL and LTL formulas. Each of these languages corresponds to a pyModelChecking's sub-module which implements all the classes required to encode the corresponding formulas.

Propositional logic is also supported by *pyModelChecking* as a shared basis for all the possible temporal logics.

2.2.1 Propositional Logics

Propositional logics support is provided by including the *pyModelChecking.language* sub-module. This sub-module allows to represents atomic propositions and Boolean values through the pyModelChecking.formula. AtomicProposition and pyModelChecking.formula.Bool classes, respectively.

```
>>> from pyModelChecking.formula import *
>>> AtomicProposition('p')

p
>>> Bool(True)
True
```

Moreover, the pyModelChecking.language sub-module implements the logic operators \land , \lor , \rightarrow and \neg by mean of the classes pyModelChecking.formula.And, pyModelChecking.formula.Or, pyModelChecking.formula.O

```
>>> And('p', True)

(p and True)

>>> And('p', True, 'p')

(p and True and p)

>>> f = Imply('q', 'p')

>>> And('p', f, Imply(Not(f), Or('q', 's', f)))
```

(continues on next page)

(continued from previous page)

```
(p and (q --> p) and (not (q --> p) --> (q or s or (q --> p))))
>> Imply('p', 'q', 'p')
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
TypeError: __init__() takes exactly 3 arguments (4 given)
```

For user convenience, the function pyModelChecking.formula.LNot() is also provided. This function returns a formula equivalent to logic negation of the parameter and minimise the number of outermost ¬.

```
>>> f = Not(Not(Not(And('p',Not('q')))))
>>> f

not not not (p and not q)

>>> LNot(f)

(p and not q)

>>> LNot(Not(f))

not (p and not q)

>>> LNot(LNot(f))

not (p and not q)
```

2.2.2 Temporal Logics Implementation

CTL* formulas can be defined by using the pyModelChecking.CTLS sub-module.

```
>>> from pyModelChecking.CTLS import *
```

Path quantifiers A and E as well as temporal operators X, F, G, U and R are provided as classes (see ref:CTLS $sub-module < ctls_api > for more details$). As in the case of propositional logics, these classes wrap strings and Boolean values as objects of the classes pyModelChecking.CTLS.language.AtomicProposition and pyModelChecking.CTLS.language.Bool, respectively.

In order to simplify the use of the library, a parsing class pyModelChecking.CTLS.Parser: has been implemented. Its objects read a formula from a string and, when it is possible, translate it into a corresponding pyModelChecking.CTLS.Formula objects.

The sub-module also implements the CTL* model checking and fair model checking algorithms described in [CGP00].

```
>>> from pyModelChecking import Kripke

>>> K = Kripke(R=[(0, 1), (0, 2), (1, 4), (4, 1), (4, 2), (2, 0),

... (3, 2), (3, 0), (3, 3), (6, 3), (2, 5), (5, 6)],

... L={0: set(), 1: set(['Start', 'Error']), 2: set(['Close']),

... 3: set(['Close', 'Heat']),

... 4: set(['Start', 'Close', 'Error']),

... 5: set(['Start', 'Close']),

... 6: set(['Start', 'Close', 'Heat'])})

>>> modelcheck(K, psi)

set([0, 1, 2, 3, 4, 5, 6])

>>> modelcheck(K, psi, F=[6])
```

It is also possible to model check a string representation of a CTL* formula by either passing an object of the class pyModelChecking.CTLS.Parser or leaving the remit of creating such an object to the function pyModelChecking.CTLS.modelcheck().

```
>>> modelcheck(K, psi_str)

set([0, 1, 2, 3, 4, 5, 6])

>>> modelcheck(K, psi_str, parser=parser)

set([0, 1, 2, 3, 4, 5, 6])
```

Analogous functionality are provided for CTL and LTL by the sub-modules pyModelChecking.CTL and pyModelChecking.LTL, respectively.

CHAPTER 3

API

3.1 Models API

pyModelChecking provides implementations for directed graph and Kripke structures.

3.1.1 Graph API

It is used to define *directed graphs* and provides a method to compute the strogly connected components of a directed graph.

3.1.2 Kripke API

It is used to define *Kripke structures*.

3.2 Logics and Model Checking API

The implementations of specific languages and their model checking routines are contained in *pyModelChecking* submodules. CTL*, CTL, and LTL are handled by *CTLS sub-module*, *CTL sub-module* and *LTL sub-module*, respectively.

3.2.1 CTLS sub-module API

It represents CTL* formulas and provides model checking methods for them.

Language

Model Checking

3.2.2 CTL sub-module API

It represents *CTL formulas* and provides model checking methods for them.

Language

Model Checking

3.2.3 LTL sub-module API

It represents *LTL formulas* and provides model checking methods for them.

Language

Model Checking

16 Chapter 3. API

$\mathsf{CHAPTER}\, 4$

Indices and tables

- genindex
- modindex
- search

Bibliography

- [P77] A. Pnueli. "The temporal logic of programs." In Proceedings of the 18th Annual Symposium of Foundations of Computer Science (FOCS), 1977, 46-57
- [BMP83] M. Ben-Ari, Z. Manna, A. Pnueli. The temporal logic of branching time. Acta Informatica 20(1983): 207-226
- [CE81] E. M. Clarke, E. A. Emerson. "Design and synthesis of synchronization skeletons using branching time temporal logic." In Logic of Programs: Workshop. LNCS 131. Springer, 1981.
- [CE80] E. M. Clarke, E. A. Emerson. "Characterizing correcteness properties of parallel programs using fix-points." In Automata, Languages, and Programming. LNCS 85:169-181. Springer 1980.
- [CES86] E. M. Clarke, E. A. Emerson, A. P. Sistla. "Automatic verification of finite-state concurrent systems using temporal logic specifications." ACM Transactions on Programming Languages and Systems 8(2): 244-263. 1986.
- [CGP00] E. M. Clarke, O. Grumberg, D. A. Peled. "Model Checking" MIT Press, Cambridge, MA, USA. 2000.
- [Bryant86] Randal E. Bryant. "Graph-Based Algorithms for Boolean Function Manipulation". IEEE Transactions on Computers, C-35(8):677–691, 1986.